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Abstract—The acoustic detection of buried mines is hampered
by the fact that at the frequencies required for obtaining useful
penetration, the energy is quickly absorbed by the ground. A
recent approach which avoids this problem, is to excite the
ground with a high-level low frequency sound, which excites low
frequency resonances in the mine. These resonances cause a low-
level vibration on the surface which can be detected by a Laser
Doppler Vibrometer. This paper presents a method of quickly
and efficiently detecting these vibrations by sensing a change in
the statistics of the signal when the mine is present. Results based
on real data are shown.

I. I NTRODUCTION

The detection of buried mines by acoustic means is ham-
pered by the fact that, at frequencies high enough to render
reasonable resolution of the mine that is suitable for detection
purposes, the energy is rapidly absorbed in the ground [1]. An
approach that is presently used is to excite the mine with a low-
frequency, high-energy signal, which then excites a resonance
in the mine [2]. The ensuing vibration causes a small but
significant vibration on the surface of the ground, which can be
detected by the use of a Laser Doppler Vibrometer (LDV). One
drawback of the LDV approach is that it generates ”speckle
noise,” a type of noise arising from the coherent nature of the
laser beam [3]. The technique presented here utilizes an au-
toregressive model of this noise. This leads to an inverse filter
that ”whitens” the noise. Upon the appearance of any target
data in the signal, a whiteness test indicates a detection. This
approach has demonstrated improvement over the presently
used bandpass filter approach. A potential further improvement
is demonstrated by incorporating the prewhitener model in a
Kalman filter. This has two advantages. First, it allows the
introduction of a process noise term which provides an extra
“tuning” parameter, and second, it provides the innovations
sequence, which can be used as an identification tool, since
its spectrum indicated the frequencies of the resonances.

II. L ASER DOPPLERVIBROMETRY

The Laser Doppler Vibrometer, or LDV, operates by scan-
ning a laser beam over the surface of interest and comparing
the scattered energy to a reference beam, thereby sensing
the small vibratory movements of the relevant surface. Its
performance is limited by the occurrence of speckle noise,
which is a consequence of the coherent nature of the laser

Fig. 1. Processing flow

light [3]. If it is not dealt with in some way, it imposes a
noise limit on the measurements.

The present approach is to scan a bandpass filter over the
LDV output, seeking the highest output [2]. This can remove
much of the speckle noise. This approach has shown some
success, but is hampered not only by the remaining speckle
noise, but by the fact that the resonance frequency is not
knowna priori. Also, since it is of interest to process the data
as rapidly as possible, the time consumed by this scanning
filter is problematical.

III. M ODEL-BASED DETECTION

In the model-based approach we observe that there are two
relevant physical phenomena that can be modeled; the noise
and the target. Directing our attention first at the noise model,
we note that the speckle noise is sufficiently stationary to
permit an autoregressive (AR) model of the target-free time
series to be used. This model allows an inverse filter to be
constructed which when applied to the data, prewhitens it. A
whiteness test [4] is then used to sense any deviation from
whiteness, since the data containing the target is not well-
represented by the AR model. This process is depicted in



Fig. 2. Sliding filter results. The time axis runs from 0 to 6 seconds and the
scan axis runs from 1 to 18.

Figure 1.

IV. DATA PROPERTIES

The test region had dimensions of60 × 60 cm. The laser
beam was swept across this region with18 scans, with a sweep
speed of10cm/sec. Each is separated by about5 cm and the
total time was 108 seconds. The LDV was looking directly
downwards (90o).

The target is a VS2.2 anti-tank landmine (plastic mine)
buried at 5 cm meter depth in a sandy gravel road. The
mine has been weathered in for many years. After FM-
demodulation, the resulting sampling frequency is976 Hz. The
signal used was a Maximum Length Sequence (MLS) of1023
points in one period. The loudspeakers were2 meters from the
target, radiating sound signals between100 Hz and250 Hz at
a very shallow grazing angle towards the road surface. The
power on the ground surface was about100 dB (C) More
detail on the experiment can be found in [2].

A. Whitening Filter

The first block in Figure 1 depicts the AR model, which
uses the Burg algorithm to provide the AR coefficients for the
inverse filter. The second block, the inverse filter, is obtained
by using the AR coefficients as the filter coefficients. This
filter whitens the target-free data and the result is then passed
to the whitening test. The whiteness test, which has the form
of a log-likelihood test, acts as the detector, since the presence
of the target data will cause the whiteness test to fail.

B. Whiteness Test

The whiteness test we use here is the Weighted Sum
Squared Residual or WSSR. It is given by

ρ(`) =
∑̀

k=`−N+1

y(k)R−1
yy (k)y(k); ` ≥ N, (1)

wherey is the data sequence andRyy is its covariance.

Fig. 3. Whiteness test results. The time axis runs from 0 to 6 seconds and
the scan axis runs from 1 to 18.

V. KALMAN FILTER APPROACH

The Kalman filter transition matrix for this case is deter-
mined by the AR model and takes the following form.

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
aN aN−1 aN−2 · · · a1




. (2)

Here, the{an} are the AR coefficients. The state equation
model (Gauss-Markov) takes the form

x(k|k) = Ax(k|k − 1) + w(k − 1) (3)

and the measurement equation is given by

y(k) = Cx(k) + v(k), (4)

with

C = [ 0 0 · · · 0 1 ]. (5)

In the abovew and v are the Gaussian process noise and
measurement noise, respectively, andy is the measurement.

The linear Kalman algorithm [4] is carried out in the usual
way, viz.

State prediction

x̂(k) = Ax̂(k|k − 1)

Compute measurement prediction



Fig. 4. Innovations sequence spectrum with no signal present

ŷ(k|k − 1) = Cx̂(k|k − 1)

Compute innovations using new measurementy(k)

ε(k) = y(k) − ŷ(k|k − 1)

Compute Kalman gain

K(k) = P̃CT R−1
ee

Compute corrected state

x̂(k|k) = x̂(k|k − 1) + K(k)ε(k)

Here, Ree is the innovations covariance and̃P is the state
error covariance, both of which are computed recursively by
the algorithm [4].

This approach is based on the following observation. If
the AR coefficients provide a sufficiently faithful model of
the signal free data, then the innovations sequence should be
zero-mean and white. However, when target information is
in the data, the model is no longer well-represented by the
model, and consequently, the innovations sequence fails the
whiteness test. The detection is then performed by applying
the innovations sequence to the WSSR test in Equation 1.

As it turns out, the performance was no better that directly
applying the prewhitened data to the WSSR. This is probably
due to the fact that the SNR of the target data was so
high. However, there is still interest in the Kalman approach
here, since the spectrum of the innovations sequence provides

Fig. 5. Innovations sequence spectrum with signal present

a direct measurement of the resonance frequencies, thereby
serving as an identification tool.

VI. RESULTS

The results using the prewhitener are shown in Figures 2
and 3. In Figure 2, the result using the sliding bandpass filter
is shown. As can be seen, there is a strong detection showing
a target approximately in the center of the test region. The
result using the whiteness test is shown in Figure 4, where
there is also a strong detection, but with a lower noise level.
Note that the peak is shifted somewhat to a later time. This
is a consequence of the fact that the whiteness test utilizes a
sliding window.

Figures 4 and 5 show the innovations sequence spectra for
the signal absent and signal present cases, respectively. As can
be seen, there a strong mine resonance near100 Hz. The lower
level resonance near340 Hz is a laser mirror resonance. Since
this is not modeled by the Kalman filter, it is in both spectra.

VII. C ONCLUSION

It is seen that this approach provides a promising approach
to buried mine detection. Normally, in such cases, one would
hope to model the signal in order to provide improvement in
performance, since the ability to model noise can sometimes
be difficult. However in this case the particular character of
speckle noise, especially its stationarity, permit such modeling.
In the data shown here, the order of the AR model is3.

Although this approach outperformed the sliding filter
method, another advantage of is thata priori knowledge of
the signal spectrum is not necessary. Further, the resonances of



the mine are accessible from the innovations spectrum, which
permits a useful classification clue.

Even though the direct prewhitening method performed as
well as the Kalman filter approach, it is felt that this is a
consequence of the high SNR. In future work we hope to
have access to data with a lower SNR.
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